Coastal erosion has depleted a large portion of South Louisiana's wetlands along the coastline in swamps and marshes mainly due to storm surges. But other factors also contributed to this erosion. Canals and waterways dug through the marshes and swamps for the oil industry is one factor. Man-made levees erected to provide protection to residents living adjacent to the river is another major cause. Large scale logging especially in the early 1900's also damaged the wetlands.
Answer:
(C) length / height of the plane
Explanation:
The mechanical advantage of an inclined plane can be determined using different variables. In this case, the geometry of the setup is relevant. The advantage is proportional to the length of the plane, and inversely proportional to the height: it is the ratio (length) / (height) of the plane. For example, given a desired, fixed height, a long inclined plane gives you a bigger mechanical advantage than a short inclined plane. In this example, pushing an object up the long plane will require a smaller force, than it would on the short plane.
Strictly speaking, (D) would also "allow you to determine the mechanical advantage" because you could simply invert the ratio listed under (D). However, (C) is the best, direct, answer.
Answer:
Hey there!
This is false. A qualitative study is about how a thing looks, not based on any mathematical or scientific data. Quantitative studies, on the other hand, draw conclusions.
Let me know if this helps :)
Final velocity is equal to initial velocity plus at (where a is acceleration and t is time), so Vf = Vi + at
Using that formula;
Vf = 0 + 12.27(3.19)
Vf = 39.14 m/s
Note: you started from rest, so your initial velocity is 0.
Answer: 950 Kg/m^3
Explanation: We can deduce from the Archimedes principle that there is a relation between the density and the volumes displaced, as follows:
Density*Volume= Mass
So for equilibrium Density of body= Density of water *Vw/Vb
Being Vw/Vb the relation between the displaced water and the body volume, and given the water density as 1000 Kg/m^3 we got:
Density(B)= 0.95 * 1000 Kg/m^3.