The gravitational force between two masses is given by:

where
G is the gravitational constant
m1 and m2 are the two masses
r is the separation between the two masses
We see that the force is proportional to the inverse of the square of the distance:

therefore, if the distance is tripled:
r'=3r
The force decreases by a factor 1/9:

Since the original force was 36 N, the new force will be
Answer:
Mechanical advantage is the measure of the force amplification achieved by using a tool , mechanical device or machine . The machine preserve the input power and supply trade off force. against movement to obtain a desired amplification in the output force .
To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

Where,
= Mass of each object
= Initial velocity of each object
= Final Velocity
Since the receiver's body is static for the initial velocity we have that the equation would become



Therefore the velocity right after catching the ball is 0.0975m/s
Answer:
Explanation:
During a car collision momentum of vehicle ceases within a fraction of seconds so Force due to the impulse is huge.
Impulse is defined as the product of average force and time. If we can increase the period of collision for the same impulse then the average force imparted will be less.
If we can increase the time period then damage due to collision will be less.
In the experiment of free fall bob released a bag of mass 1 lb
so here we can say that initial speed of the bag is Zero
time taken by the bag to free fall is given as
t = 1.5 s
also the acceleration of free fall is given as
a = 9.8 m/s^2
now we will use kinematics equation here for finding the distance of free fall




so the bag will fall down by total distance of 11.025 m from its initial released position.