Answer:the answer is 18.01528
Explanation:
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.
<h3><u>Answer;</u></h3>
True
<h3><u>Explanation</u>;</h3>
- The molecule NH3 contains all single bonds.
- NH3 has a three single covalent bond among its nitrogen and hydrogen atoms,because one valence electron of each of three atom of hydrogen is shared with three electron.
- There are three covalent bonds are in NH3 . Each hydrogen make a single bond with nitrogen and there is also a pair of electron which is unpaired from nitrogen.
Answer:
Explanation:
The reaction is given as:

The reaction quotient is:
![Q_C = \dfrac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q_C%20%3D%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
From the given information:
TO find each entity in the reaction quotient, we have:
![[NH_3] = \dfrac{6.42 \times 10^{-4}}{3.5}\\ \\ NH_3 = 1.834 \times 10^{-4}](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%20%5Cdfrac%7B6.42%20%5Ctimes%2010%5E%7B-4%7D%7D%7B3.5%7D%5C%5C%20%5C%5C%20NH_3%20%3D%201.834%20%5Ctimes%2010%5E%7B-4%7D)
![[N_2] = \dfrac{0.024 }{3.5}](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%5Cdfrac%7B0.024%20%7D%7B3.5%7D)
![[N_2] = 0.006857](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%200.006857)
![[H_2] =\dfrac{3.21 \times 10^{-2}}{3.5}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%5Cdfrac%7B3.21%20%5Ctimes%2010%5E%7B-2%7D%7D%7B3.5%7D)
![[H_2] = 9.17 \times 10^{-3}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%209.17%20%5Ctimes%2010%5E%7B-3%7D)
∴

However; given that:

By relating
, we will realize that 
The reaction is said that it is not at equilibrium and for it to be at equilibrium, then the reaction needs to proceed in the forward direction.