Oxygen had 6 valence electrons
Answer:
b) 2.0 mol
Explanation:
Given data:
Number of moles of Ca needed = ?
Number of moles of water present = 4.0 mol
Solution:
Chemical equation:
Ca + 2H₂O → Ca(OH)₂ + H₂
now we will compare the moles of Ca and H₂O .
H₂O : Ca
2 : 1
4.0 : 1/2×4.0 = 2.0 mol
Thus, 2 moles of Ca are needed.
Answer:
A. volume
Explanation:
Generally the equation for the ideal gas is mathematically given as
PV=nRT
Where
P=pressure
V=volume
R=gas constant
n=Number of Moles
T=Temperature
Therefore
V=nRT/P
Option A
For more information on this visit
brainly.com/question/17756498
Answer:
a) heat it from 23.0 to 78.3
q = (50.0 g) (55.3 °C) (2.46 J/g·°C) =
b) boil it at 78.3
(39.3 kJ/mol) (50.0 g / 46.0684 g/mol) =
c) sum up the answers from the two calculations above. Be sure to change the J from the first calc into kJ
Explanation:
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
- The first law of thermodynamics is a similar version of the law of conservation of energy where the energy can neither be created nor be destroyed, it can be transformed from one form to the other.
- It also defines that the work is done and heat flowing into the system is due to the change in internal energy. The sum of all energy including kinetic and potential energy except the displaced energy to the surrounding is known as internal energy.
- ΔU represents the change in internal energy of the system, Q represents the net heat transferred into the system, and W represents the net work done by the system. So +ve Q adds energy to the system and =ve W takes energy from the system. Thus ΔU=Q−W.