Answer:
The right answer is "8.81 atm".
Explanation:
Given:
V = 5.00 L
Mass = 4900 g
MW = 32 g/mol
T = 350 K
Now,
Number of moles will be:



By using the ideal gas equation, we get
⇒ 
or,
⇒ 
By substituting the values, we get


Answer:The answer would be 2 sorry i cant show the work right now
Explanation:
Answer:
The density of beryllium is 1.85 g/cm³. Thus given metal is beryllium.
Explanation:
Given data:
Mass of metal = 37 g
Volume of metal = 20cm³
Which metal is this = ?
Solution:
We will solve this problem by using density formula. After finding density we will check from literature which metal has a density similar to our calculated density.
d = m/v
d = 37 g/ 20cm³
d = 1.85 g/cm³
The density of beryllium is 1.85 g/cm³. Thus given metal is beryllium.
Answer:
1 = Q = 7315 j
2 =Q = -21937.5 j
Explanation:
Given data:
Mass of water = 50 g
Initial temperature = 20°C
Final temperature = 55°C
Energy required to change the temperature = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 j/g.°C.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 55°C - 20°C
ΔT = 35°C
Q = 50 g× 4.18 j/g.°C×35°C
Q = 7315 j
Q 2:
Given data:
Mass of metal = 100 g
Initial temperature = 1000°C
Final temperature = 25°C
Energy released = ?
Specific heat capacity = 0.225 j/g.°C
Solution:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 25°C - 1000°C
ΔT = -975°C
Now we will put the values in formula.
Q = 100 g × 0.225 j/g.°C × -975°C
Q = -21937.5 j
Negative sign show that energy is released.