Ion with a 1+ charge. The atom would normally be neutral, since it has the same number of electrons as it does protons; removing an electron leaves one more proton than electron. Since protons are positive and there's one more of them than electrons in the new ion, it has a 1+ charge.
Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g
Organism<span>. ' s rate of mutation is directly proportional to its adaptability. .... D. The cell membrane contains </span>genetic<span> information of the cell. .... </span>What<span> cellular structure was the dialysis tubing most likely</span>representing<span> in this experiment? ...... C </span>Rr<span> and </span>rr<span> only ... A healthy </span>individual<span> is a carrier of a lethal allele but is unaffected by it.</span>
Answer:
1.20 × 10³ torr
Explanation:
Step 1: Given data
- Initial pressure (P₁): 822 torr
- Initial temperature (T₁): 325 K
- Final temperature (T₂): 475 K
Step 2: Calculate the final pressure of the gas
Considering the constant volume, if we assume the gas behaves ideally, we can calculate its final pressure using Gay-Lussac's law.
P₁/T₁ = P₂/T₂
P₂ = P₁ × T₂/T₁
P₂ = 822 torr × 475 K/325 K = 1.20 × 10³ torr