<span>on plato it's 2,3–dimethylpentane
</span>
Enthalpy is a state function
Explanation:
The Hess's law allows us to determine the enthalpy change of a reaction because enthalpy is a state function. It does not depend on the individual path take in going from reactants to products in the reaction.
- Enthalpy changes are the heat changes accompanying physical and chemical changes.
- It is the difference between the heat content of product in the final state and the reactants.
- Enthalpy changes for some reactions are not easily measurable experimentally.
- To calculate such heat changes, we apply the Hess's law of heat summation.
- The law states that "the heat change of a reaction is the same whether it occurs in a step or several steps".
- The Hess's law is simply based on the first law of thermodynamics by which we know that energy is conserved in every system.
learn more:
Hess's law brainly.com/question/11293201
#learnwithBrainly
The question is missing the data sets.
This is the complete question:
A single penny has a mass of 2.5 g. Abbie and James
each measure the mass of a penny multiple times. Which statement about
these data sets is true?
O Abbie's measurements are both more accurate
and more precise than James'.
O Abbie's measurements are more accurate,
but less precise, than James'.
O Abbie's measurements are more precise,
but less accurate, than James'.
O Abbie’s measurements are both less
accurate and less precise than James'.
Penny masses (g)
Abbie’s data
2.5, 2.4, 2.3, 2.4, 2.5, 2.6, 2.6
James’ data
2.4, 3.0, 3.3, 2.2, 2.9, 3.8, 2.9
Answer: first option, Abbie's measurements are both more accurate
and more precise than James'.
Explanation:
1) To answer this question, you first must understand the difference between precision and accuracy.
<span>Accuracy is how close the data are to the true or accepted value.
</span>
<span>Precision is how close are the data among them, this is the reproducibility of the values.</span>
Then, you can measure the accuracy by comparing the means (averages) with the actual mass of a penny 2.5 g.
And you measure the precision by comparing a measure of spread, as it can be the standard deviation.
2) These are the calculations:
Abbie’s data
Average: ∑ of the values / number of values
Average = [2.5 + 2.4 + 2.3 + 2.4 + 2.5 + 2.6 + 2.6 ] / 7 = 2.47 ≈ 2.5
Standard deviation: √ [ ∑ (x - mean)² / (n - 1) ] = 0.11
James’ data
Average = [2.4 + 3.0 + 3.3 + 2.2 + 2.9 + 3.8 + 2.9] / 7 = 2.56 ≈ 2.6
Standard deviation = 0.53
3) Conclusions:
1) The average of Abbie's data are closer to the accepted value 2.5g, so they are more accurate.
2) The standard deviation of Abbie's data is smaller than that of Jame's data, so the Abbie's data are more precise.
Answer:
molar mass of carbon tetrafluoride (CF4) is
(12.01 × 1 ) + ( 4 × 19.00)
= 12.01 + 76
= 88.01u
= 88u
Hope this helps