The answer is B
As seen on the graph, the bus maintains a 9m/s speed for a majority of the trip to school.
A simple machine can make work easier by reduce the amount of energy needed to perform a task, therefore, B. <span>it magnifies the potential energy so that the kinetic energy is greater</span> is the correct answer.
Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s
Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved

now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation

![1.75 = [4.5 + 0.245]\omega](https://tex.z-dn.net/?f=1.75%20%3D%20%5B4.5%20%2B%200.245%5D%5Comega)


so the final angular speed will be 0.37 rad/s