Nuclear fusion in the sun involves hydrogen (H) atoms
combining to form helium (He). A student claims that since the atmosphere
contains hydrogen, any fusion reaction on Earth would result in an uncontrolled
chain reaction. What is wrong in the student’s reasoning is that the uncontrolled
chain reactions can only happen during nuclear fission.
A complex, ML₆²⁺, is violet. The same metal forms a complex with another ligand, Q, that creates a weaker field. MQ₆²⁺, be expected to show green color.
<h3>What is spectrochemical series?</h3>
The ligands (attachment to a metal ion) are listed in the spectrochemical series according to the strength of their field. The series has been created by superimposing several sequences discovered through spectroscopic research because it is impossible to produce the full series by examining complexes with a single metal ion. The halides are referred to be weak-field ligands whereas the ligands cyanide and CO are strong-field ligands. Medium field effects are claimed to be produced by ligands like water and ammonia.
To know more about the spectrochemical series, visit:
brainly.com/question/27892620
#SPJ4
Answer:
Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.251×109 years. It makes up 0.012% (120 ppm) of the total amount of potassium found in nature.
...
Potassium-40.
General
Natural abundance 0.0117(1)%
Half-life 1.251(3)×109 y
Parent isotopes Primordial
Decay products 40Ca (β−) 40Ar (EC, γ; β+)
Answer:
First step would be convert to moles
Final Answer: 37.8 g of NaCl
Explanation:
The reaction is:
2Na + Cl₂ → 2NaCI
We convert the mass of each reactant to moles:
18 g . 1mol /23g = 0.783 moles of Na
23g . 1mol / 70.9g = 0.324 moles of chlorine
We use the mole ratio to determine the limiting reactant:
Ratio is 2:1. 2 moles of Na react to 1 mol of chlorine
Then, 0.783 moles of Na, may react to (0.783 . 1)/2 = 0.391 moles.
Excellent!. We need 0.391 moles of Cl₂ and we only have 0.324 moles available. That's why the Cl₂ is our limiting reactant.
We use the mole ratio again, with the product side. (1:2)
1 mol of Cl₂ can produce 2 moles of NaCl
Then, our 0.324 moles of gas, may produce (0.324 . 2)/1 = 0.648 moles
Finally, we convert the moles to grams:
0.648 mol . 58.45g/mol =