I don’t really have a clear answer for you but this might help
The molar concentration will be greater than 0.01 M
.
Since more of the compound was measured out than what was calculated, you can think of the solution as being 'stronger' than what it was calculated to be. Since a 'stronger' concentration results in a number that is higher, the molarity of this solution is going to be greater than 0.01 M.
Answer:
The MO method for N2+ gives the bond order equal to 2.5. But first, we look at the diagram of molecular orbitals for N2 (the bond order for the nitrogen molecule is 3). the N2+ molecule). That is, the bond order for N2+ is 2.5.
Answer:
B. 0.2.
Explanation:
<em>n = mass/molar mass</em>
mass of CaCO₃ = 20 g, molar mass of CaCO₃ = 100.0869 g/mol.
<em>∴ n = mass/molar mass = </em>(20 g)/(100.0869 g/mol) <em>= 0.1998 ≅ 0.2 mol.</em>
<em></em>
<em>So, the right choice is: B. 0.2.</em>
Answer:
62.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2C₈H₁₈ + 25O₂ —> 16CO₂ + 18H₂O
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Finally, we shall determine the number of mole of O₂ needed to react with 5 moles of C₈H₁₈. This can be obtained as shown below:
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Therefore, 5 moles of C₈H₁₈ will react with = (5 × 25) / 2 = 62.5 moles of O₂.
Thus, 62.5 moles of O₂ is needed for the reaction.