Answer:
1)4×10^13Hz
2) 9.95×10-9J
Explanation:
From the image attached, it is clear that the work function of the palladium metal must first be obtained in joules. Then, the frequency is obtained from E=hf.
The kinetic energy if the photoelectrons is obtained as the difference between the energy of the photon and the work function of the metal.
Since the question manages to include moles, pressure, volume, and temperature, then it is evident that in order to find the answer we will have to use the Ideal Gas Equation: PV = nRT (where P = pressure; V = volume; n = number of moles; R = the Universal Constant [0.082 L·atm/mol·K]; and temperature.
First, in order to work out the questions, there is a need to convert the volume to Litres and the temperature to Kelvin based on the equation:
250 mL = 0.250 L
58 °C = 331 K
Also, based on the equation P = nRT ÷ V
⇒ P = (2.48 mol)(0.082 L · atm/mol · K)(331 K) ÷ 0.250 L
⇒ P = (67.31 L · atm) ÷ 0.250 L
⇒ P = 269.25 atm
Thus the pressure exerted by the gas in the container is 269.25 atm.
This polarity makes water molecules attracted to each other. The oxygen-hydrogen bond in the alcohol molecule is also polar. But, the carbon hydrogen bonds in the rest of the alcohol molecule are nonpolar. In these bonds, the electrons are shared more or less evenly.
Answer:
The water cycle is driven primarily by the energy from the sun.
Answer:
When the hammer is in the sun, heat flows by radiation
When you pick up the hammer, heat flows by conduction
Explanation:
As the hammer lies in the sun, heat is transferred to the hammer by radiation. Heat energy reaches the earth from the sun by radiation. Radiation is a mode of beat transfer in which heat is transferred without a material medium.
When you pick up the hammer, heat flows to your hand by conduction because your body is a conductor of heat.