Answer:
Mass stays the same because no matter is created or destroyed.
Explanation:
Regardless of what chemical reaction we have, in each case the law of mass conservation applies. The law of mass conservation states that the total mass of a reaction mixture is kept constant, as mass cannot be created or destroyed.
In this specific reaction, the total mass of the reactants should be equal to the total mass of the products when the reaction is complete.
In other words, if we add the mass of hydrogen to the mass of nitrogen, when the reaction is compete, assuming no reagent in excess, this should be equal to the mass of ammonia formed.
Qwe4qdre4wrfwqe4rfwqerfwqerfq
Idek I just need free points so I can use this app for free
Answer:
37 mmol of acetate need to add to this solution.
Explanation:
Acetic acid is an weak acid. According to Henderson-Hasselbalch equation for a buffer consist of weak acid (acetic acid) and its conjugate base (acetate)-
![pH=pK_{a}(acetic acid)+log[\frac{mmol of CH_{3}COO^{-}}{mmol of CH_{3}COOH }]](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28acetic%20acid%29%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7Bmmol%20of%20CH_%7B3%7DCOOH%20%7D%5D)
Here pH is 5.31,
(acetic acid) is 4.74 and number of mmol of acetic acid is 10 mmol.
Plug in all the values in the above equation:
![5.31=4.74+log[\frac{mmol of CH_{3}COO^{-}}{10}]](https://tex.z-dn.net/?f=5.31%3D4.74%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7B10%7D%5D)
or, mmol of
= 37
So 37 mmol of acetate need to add to this solution.
The molecular weight of water is <span>18.01528 g/mol.
So in 2.92 grams there are 2.92/</span>18.01528 = 0.1621 mol of particles.
1 mol contains 6,02214 × 10^<span>23 particles by definition.
So the nr of H2O molecules is </span>0.1621 * 6,02214 × 10^23 = 0,9761 × 10^23.
Every molecule has 2 H atoms, so you have to double that.
2* 0,9761 × 10^23 = 1.952 × 10^23.