Explanation:
Reaction equation is as follows.

Here, 1 mole of
produces 2 moles of cations.
![[Na^{+}] = 2[Na_{2}SO_{3}] = 2 \times 0.58](https://tex.z-dn.net/?f=%5BNa%5E%7B%2B%7D%5D%20%3D%202%5BNa_%7B2%7DSO_%7B3%7D%5D%20%3D%202%20%5Ctimes%200.58)
= 1.16 M
= 0.58 M
The sulphite anion will act as a base and react with
to form
and
.
As, 
= 
=
According to the ICE table for the given reaction,

Initial: 0.58 0 0
Change: -x +x +x
Equilibrium: 0.58 - x x x
So,
![K_{b} = \frac{[HSO^{-}_{3}][OH^{-}]}{[SO^{2-}_{3}]}](https://tex.z-dn.net/?f=K_%7Bb%7D%20%3D%20%5Cfrac%7B%5BHSO%5E%7B-%7D_%7B3%7D%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BSO%5E%7B2-%7D_%7B3%7D%5D%7D)


x = 0.0003 M
So, x =
= 0.0003 M
= 0.58 - 0.0003
= 0.579 M
Now, we will use
= 0.0003 M
The reaction will be as follows.

Initial: 0.0003
Equilibrium: 0.0003 - x x x


= 
= 
Therefore, 
As, x <<<< 0.0003. So, we can neglect x.
Therefore, 
= 
x = 
x =
= 
![[H^{+}] = \frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
= 
=
M
Thus, we can conclude that the concentration of spectator ion is
M.
Answer: <em>Acceleration of the ball in the given system is 5 meter per Second Square</em>
<em>The laws of motion are used to determine various aspects of an object in motion</em>.
Explanation:
Applying the first law of motion to calculate acceleration; if formula used in first law is given as 
Here we have a final velocity as 40 meter per second and initial velocity as 20 meter per second and time span is given as 2 second applying the given values in the given equation and finding the value of a
A neutral atom that loses an electron becomes a positive ion. ... An atom that gains or loses an electron becomes an ion. If it gains a negative electron, it becomes a negative ion. If it loses an electron it becomes a positive ion
Answer:
16,,24Mg 17,,a24.1 18a mass number of the most abundant isotope
Explanation:
atomic number of Mg is 12 ,therefore its mass number should be the value that is very close to 24.
24.1 is the value of thee most abundant isotope.