Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary to write out the described chemical reaction as shown below:

Now, we set up the expression for the calculation of the standard free energy change, considering the free energy of formation of each species, specially those of H2 and F2 which are both 0 because they are pure elements:

Regards!
Answer:
kinetic energy
Explanation:
because of the movement of gravity and space
Inert gas does not affect the equilibrium position:
It is because the partial pressures of the reaction components remain the same.
What is Inert Gas?
- Under a given set of conditions, an inert gas is a gas that does not undergo chemical reactions.
- The noble gases (helium, neon, argon, krypton, xenon, and radon) were previously known as "inert gases" due to their perceived lack of involvement in any biochemical processes.
- Because inert gases are non-reactive, they do not affect equilibrium partial pressures and thus do not affect volume.
- An inert gas does not react with the reactants or products; it does not change the concentration of the products and reactants. Furthermore, because the volume is constant, the concentrations are unaffected. As a result, this does not affect equilibrium.
The equilibrium position won't change if an inert gas is added. A volume change won't change the equilibrium position if the total moles of gas in the products and reactants are the same. When the volume is reduced, the process changes to create fewer moles of gas.
Learn more about the inert gas here,
brainly.com/question/15909389
#SPJ4
Answer:
Adding salt to the water increases the density of the solution because the salt increases the mass without changing the volume very much. When you add table salt (sodium chloride, NaCl) to water, the salt dissolves into ions, Na+ and Cl-. The volume increases by a small factor, but the mass increases by a bigger factor.
Explanation:
<span>Tf is the freezing point of the solution(the solvent plus solute).
T*f is the freezing point of the pure solvent(without solute)
i is the van't Hoff factor.It is approximately the number of particles in solution that are made for each particle of the solute that is placed into solution.Therefore, for nonelectrolytes, i = 1.
Kf is the freezing point depression constant.For water, Kf = 1.86 Degree C/m, or 1.86 Degree C.kg/mol.
Tf is -1.58 Degree C</span>