Answer:
4.3 m/sec
Explanation:
Here height of cliff = y = 37.6 m
Gravitational acceleration = g = 9.8 m/sec2
vi = 0 m/s
Let's find the time which the diver will take if jumps from there!
Using formula
y = vit+1/2gt2
==> 37.6= 0 + 0.5 ×9.8×![t^{2}](https://tex.z-dn.net/?f=t%5E%7B2%7D)
==>
=
==> t = 2.8 sec
In this time the diver has to cover a horizontal distance of 12.12 m
If x = 12.12 m is the horizontal distance to be covered then using
x= Vx × t
==> Vx = x/t
==> Vx= 12.12/2.8 = 4.3 m/s
False the strength off the magnet lessens the farther you get from it
Answer:
m = 236212 [kg]
Explanation:
The potential energy can be determined by means of the product of mass by gravity by height. In this way, we have the following equation.
![P=m*g*h\\](https://tex.z-dn.net/?f=P%3Dm%2Ag%2Ah%5C%5C)
where:
P = potential energy = 3360000000 [J]
m = mass [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 1450 [m]
Now, we can clear the mass from the equation above:
![3360000000=m*9.81*1450\\m = 236212 [kg]](https://tex.z-dn.net/?f=3360000000%3Dm%2A9.81%2A1450%5C%5Cm%20%3D%20236212%20%5Bkg%5D)
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
Image from a far away object formed by a concave mirror
I have no idea but this is my best guess as a sophomore in college