Answer:
Mass of hydrogen = 667 kg (Approx)
Explanation:
Given:
Mass of water = 593 kg
Yield rate = 88.9%
Find:
Mass of hydrogen
Computation:
Mass of hydrogen = [Mass of water / Yield rate]100
Mass of hydrogen = [593 / 88.9]100
Mass of hydrogen = 667.04162
Mass of hydrogen = 667 kg (Approx)
Answer:
P₄ + 5O₂ → 2P₂O₅
Explanation:
Phosphorus burn in the presence of air and produced diphosphorus pentoxide.
Chemical equation:
P₄ + O₂ → P₂O₅
Balanced chemical equation:
P₄ + 5O₂ → 2P₂O₅
Equation is balanced because there are four phosphorus atoms ans ten oxygen atoms in both side of equation.
Coefficient with reactant and product:
P₄ 1
O₂ 5
P₂O₅ 2
Answer:
Reaction Quotient, Kq = {[a-ketoglutarate]x[L-alanine]}/{[L-glutamate]x[pyruvate]}
or, Kq = {(1.6x10-2)x(6.25x10∧-3)}/{(3x10∧-5)x(3.3x10-4)} = 1.01 x 10∧4
Since Kq > Keqb ; therefore the reaction will proceed in the backward direction, in order words the reaction will not occur in forward direction. i.e formation of reactants will be favored.
Explanation:
solution:
the change in the boiling point is given as,
dTbp =2.30°c
elevation constant for the solvent is given by,
kb=0.512°c/m

= 4.49m
Explanation:
Conjugated diene is the one that contains alternate double bonds in its structure. That means both the double bonds are separated by a single bond.
Cumulated diene is the one that contains two double bonds on a single atom. This means it has two double bonds continuously.
Isolated double-bonded compound has a single bond isolated by two to three single bonds.
Compound A: Two alkenes are joined by a sigma bond.
For example:
It is a conjugated diene.
Compound B: Two alkenes are joined by a C H 2 group.
It is a cumulative diene.
Compound C: Two alkenes are joined by C H 2 C H 2.
Then it is an isolated alkene.
Compound D: A cyclohexene has a double bond between carbons 1 and 2. Carbon 3 is an sp 2 carbon that is bonded to another s p 2 carbon with an alkyl substituent.
Hence, compound D is a conjugated diene.