Answer:
2.61 J
Explanation:
Since potential energy U = mgy where m = mass of object, g = acceleration due to gravity = 9.8 m/s² and y = height of object above the ground.
Now for the coffee mug, m= 0.422 kg and it is 0.63 m on a table, so it is 0.63 m above the ground. Thus, y = 0.63 m.
We compute U
U = mgy
= 0.422 kg × 9.8 m/s² × 0.63 m
= 2.605 J
≅ 2.61 J
So, the potential energy of the mug with respect to the floor is 2.61 J
Answer:
Marie Curie
Explanation:
I hope to see you helped :D?
D). located out side the nucleus
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
Answer:
the angular speed is around 45
Explanation: