This question involves the concepts of the law of conservation of energy, kinetic energy, and potential energy.
The height of the hill is "166.76 m".
<h3>LAW OF CONSERVATION OF ENERGY:</h3>
According to the law of conservation of energy at the highest point of the roller coaster ride, that is, the hill, the whole (maximum) kinetic energy of the roller coaster is converted into its potential energy:

where,
- h = height of the hill = ?
= maximum velocity = 57.2 m/s
- g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>h = 166.76 m</u>
Learn more about the law of conservation of energy here:
brainly.com/question/101125
Answer:
Explanation:
Let m be the mass of cylinder and r be the radius. It is moving with velocity v and angular velocity is ω. Let I be the moment of inertia of the cylinder.
I = 0.5 mr²
Total kinetic energy, T = 0.5 mv² + 0.5 Iω²
T = 0.5 (mv² + 0.5 mr²ω²)
v = rω
So, T = 0.5 (mv² + 0.5 mv²) = 0.75 mv²
Rotational kinetic energy is
R = 0.5 Iω² = 0.5 x 0.5 mr²ω²
R = 0.25 mv²
So, R / T = 0.25 / 0.75 = 1/3
Answer:
a) 2.063*10^-4
b) 1.75*10^-4
Explanation:
Given that: d= 1.628 mm = 1.628 x 10-3 I= 12 mA = 12.0 x 10-8 A The Cross-sectional area of the wire is:

a) <em>The Potential difference across a 2.00 in length of a 14-gauge copper </em>
<em> wire: </em>
L= 2.00 m
From Table Copper Resistivity
= 1.72 x 10-8 S1 • m The Resistance of the Copper wire is:

=0.0165Ω
The Potential difference across the copper wire is:
V=IR
=2.063*10^-4
b) The Potential difference if the wire were made of Silver: From Table: Silver Resistivity p= 1.47 x 10-8 S1 • m
The Resistance of the Silver wire is:

=0.014Ω
The Potential difference across the Silver wire is:
V=IR
=1.75*10^-4
Assuming it is on a horizontal surface:
friction = μR
R = 20g (g is gravity 9.81)
so Friction = 0.085 x 20g
Work done is force x distance
so Work done = 0.085 x 20g x 28
= 466.956 J