1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
2 years ago
10

Water from a vertical pipe emerges as a 10-cm-diameter cylinder and falls straight down 7.5 m into a bucket. The water exits the

pipe with a speed of 2.0 m/s. What is the diameter of the column of water as it hits the bucke g
Physics
1 answer:
cupoosta [38]2 years ago
6 0

The diameter of the column of the water as it hits the bucket is 4.04 cm

The equation of continuity occurs in the fluid system and it asserts that the inflow and the outflow of the volume rate at the inlet and at the outlet of the system are equal.

By using the kinematics equation to determine the speed of the water in the bucket and applying the equation of continuity to estimate the diameter of the column, we have the following;

Using the kinematics equation:

\mathbf{v_f ^2 = v_i^2 + 2gh}

\mathbf{v_f ^2 =(2.0)^2 + 2\times 9.8 \times 7.5}

\mathbf{v_f ^2 =151 m/s}

\mathbf{v_f  =\sqrt{151 m/s}}

\mathbf{v_f  =12.29 \ m/s}  

From the equation of continuity:

\mathbf{A_iV_i = A_fV_f}

\mathbf{\pi r^2_iV_i = \pi r^2_fV_f}

\mathbf{ r^2_iV_i =  r^2_fV_f}

\mathbf{ (\dfrac{10}{2})^2\times 2.0 =  r_f^2 \times 12.29}

\mathbf{ 50 = 12.29 \times r_f^2}

\mathbf{ r_f=  \sqrt{\dfrac{50}{12.29} }}

\mathbf{ V_f= 2.02 \ cm }

Since diameter = 2r;

∴

The diameter of the column of the water is:

= 2(2.02) cm

= 4.04 cm

Learn more about the equation of continuity here:

brainly.com/question/10822213

You might be interested in
As a pendulum bob swings back and forth several times, the maximum height it reaches becomes less and less.
Ymorist [56]

Answer:

A or B

Explanation:

4 0
3 years ago
A rock is dropped from rest and falls 50 m determine the velocity upon hitting the groung?
LekaFEV [45]
V^2= 2* g * s
V^2 = 2 * 9.8 * 50 = 980
v = square root (980)=...... m/s
7 0
3 years ago
Why is it correct to say that solar energy, wind energy, and some forms of water power have the same source?
Inessa [10]
Maybe because all of them come from natural elements (sun, air and water)
8 0
3 years ago
Explain how mirrors can produce images that are larger or smaller than life size, as well as upright or inverted
galina1969 [7]

Answer:

1) When d_{o} < d_{i} (hence  d_{o} < f ) and they are both in front of the mirror (positive), the image will be larger and inverted

2) When d_{o} > d_{i} (and d_{o} < f ) such that they are both positive (in front of the mirror), the image will be smaller and inverted

3) When the image is behind the mirror, for convex mirrors and the object is in front the image will be uptight. The magnification of the image will be the ratio of the image distance to the object distance from the mirror

Explanation:

The position of an object in front of a concave mirror of radius of curvature, R, determines the size and orientation of the image of the object as illustrated in the mirror equation

\dfrac{1}{f}=\dfrac{1}{d_{o}} + \dfrac{1}{d_{i}}

Magnification, \, m = \dfrac{h_{i}}{h_{o}} = -\dfrac{d_{i}}{d_{o}}

Where:

f = Focal length of the mirror = R/2

d_{i} = Image distance from the mirror

d_{o} = Object distance from the mirror

h_{i} = Image height

h_{o} = Object height

d_{o} is positive for an object placed in front of the mirror and negative for an object placed behind the mirror

d_{i} is positive for an image formed in front of the mirror and negative for an image formed behind the mirror

m is positive when the orientation of the image and the object is the same

m is negative when the orientation of the image and the object is inverted

f and R are positive in the situation where the center of curvature is located in front of the mirror (concave mirrors) and f and R are negative in the situation where the center of curvature is located behind the mirror (convex mirrors)

∴ When d_{o} < d_{i} (hence  d_{o} < f ) and they are both in front of the mirror (positive), the image will be larger and inverted

When d_{o} > d_{i} (and d_{o} < f ) such that they are both positive (in front of the mirror), the image will be smaller and inverted

When the image is behind the mirror, for convex mirrors and the object is in front the image will be uptight. The magnification of the image will be the ratio of the image distance to the object distance from the mirror.

5 0
3 years ago
A 15g football was kicked to an acceleration of 55m/s2. What was the force applied to it? 40N 3.7N 825N
Pepsi [2]

Answer:

f =ma = 0.015 * 55 = 0.825 N

so yeah that's ur ans

8 0
2 years ago
Read 2 more answers
Other questions:
  • Two large metal plates of area 1.2 m^2 face each other, 6.5 cm apart, with equal charge magnitudes but opposite signs. The field
    15·1 answer
  • A solid, uniform sphere of mass 2.0 kg and radius 1.7 m rolls without slipping down an inclined plane of height 5.3 m. what is t
    10·1 answer
  • The chart shows masses and velocities of four objects. Which lists the objects in order, from least to greatest momentum?
    9·2 answers
  • Camels can run faster than horses in desert.Why
    13·2 answers
  • Which motion maps show an object in uniform circular motion? Check all that apply. V W X Y
    9·2 answers
  • 26. The ice on the front windshield of the car had formed when moisture condensed during the night. The ice melted quickly after
    12·1 answer
  • Question 6 of 10
    9·1 answer
  • Identify the type of particle that would be given off by each of the following nuclear reactions:
    11·2 answers
  • Why is gravitational acceleration almost always a factor in determining pressure?
    14·1 answer
  • B)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!