It seems like the question is asking for the frequency.
Given:
Time period (T) = 2.4 sec
Frequency (f) =?
We know that the formula for frequency is:
Frequency (f) = 1/time period (T)
= 1 / 2.4 s
= 0.42 Hz. is the frequency for this problem.
Answer:
0
Explanation:
It’s before the projectile was fired, so nothing has happened yet.
Answer:
low, low
Explanation:
Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies.
Large amplitude waves contain more energy. The other is frequency, which is the number of waves that pass by each second. If more waves( or more wiggly lines) pass by, more energy is transferred each second
Answer:
b
Explanation:
The space shuttle, in circular orbit around the Earth, collides with a small asteroid which ends up in the shuttle's storage bay.
This form of collision is called inelastic collision. And inelastic collision momentum is conserved but the kinetic energy is not conserved. Hence the correct option is b. only momentum is conserved.
I think this is the solution:
1: U-1, F,-4
2: Na-6, Mo-1, O-4
3: Bi-1, O-1, C-1, I-1
4: In-9, N-1
5: N-2, H-4, S-1, C-1
6: Ge- 15, N-4
7: N-1, H-4, C-1, I-1, O-3
8: H-7, F-1
9: N-1, O-5, H-1, S-1
10: H-8
11: Nb-1, O-1, C-1, I-3
12: C-3, F-3, S-1, O-3, H-1
13: Ag-1, C-1, N-1, O-1
14: Pb-6, H-1, As-1, O-4