For example, ionic compounds, which are very polar, are often soluble in the polar solvent water. Nonpolar substances are likely to dissolve in nonpolar solvents. For example, nonpolar molecular substances are likely to dissolve in hexane, a common nonpolar solvent.
One of the examples is radiation and chemistry of water. Environmental science requires the capacity to integrate data from the greater part of the significant fields of science, and in addition from arithmetic.
Geology is vital on the grounds that huge scale arrives forms make geology. The presence of mountains and valleys influences how much daylight and precipitation achieve the ground, how breezy an area is, the manner by which precipitation keeps running off, and numerous different variables that figure out what plants and creatures will have the capacity to occupy a district.
After 100years, sample is 250g
After 200 years, sample is 125g
After 300years, sample is 62.5 g
First identify which is being oxidized and reduced. In this case, the Mg is being oxidized and the Hg is being reduced.
Mg --> Mg+2
<span>Hg+2 --> Hg+1
</span>
Then you have to balance each half reaction first with electrons before adding them together in one equation

⇒

and

⇒
and then combine them together to form

⇒

It isn't necessary to keep the electrons but its essential to know how many there are in order to know how many are in the equation in order to calculate the reaction energy. Note: A<span>dd H+ and H2O to balance the H's and O's in acidic solution if needed.</span>
According to the PH formula:
PH= Pka +㏒ [strong base/weak acid]
when we have PH at the first equivalence =3.35 and the Pka1 = 1.4
So, by substitution, we can get the value of ㏒[strong base / weak acid]
3.35 = 1.4 + ㏒[strong base/ weak acid]
∴㏒[strong base/weak acid] = 3.35-1.4 = 1.95
to get the Pka2 we will substitute with the value of ㏒[strong base/ weak acid] and the value of PH of the second equivalence point
∴Pk2 = PH2 - ㏒[strong base/ weak acid]
= 7.55 - 1.95 = 5.6