Answer:
113 g NaCl
Explanation:
The Ideal Gas Law equation is:
PV = nRT
In this equation,
> P = pressure (atm)
> V = volume (L)
> n = number of moles
> R = 8.314 (constant)
> T = temperature (K)
The given values all have to due with the conditions fo F₂. You have been given values for all of the variables but moles F₂. Therefore, to find moles F₂, plug each of the values into the Ideal Gas Law equation and simplify.
(1.50 atm)(15.0 L) = n(8.314)(280. K)
2250 = n(2327.92)
0.967 moles F₂ = n
Using the Ideal Gas Law, we determined that the moles of F₂ is 0.967 moles. Now, to find the mass of NaCl that can react with F₂, you need to (1) convert moles F₂ to moles NaCl (via the mole-to-mole ratio using the reaction coefficients) and then (2) convert moles NaCl to grams NaCl (via molar mass from periodic table). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator).
1 F₂ + 2 NaCl ---> Cl₂ + 2NaF
Molar Mass (NaCl): 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl): 58.44 g/mol
0.967 moles F₂ 2 moles NaCl 58.44 g
---------------------- x ----------------------- x ----------------------- = 113 g NaCl
1 mole F₂ 1 mole NaCl
Answer:
As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure.
Answer:
66m
Explanation:
To get the area of something you multiple the length (5.5) by the width (12) together. So the problem would look like 5.5×12 and if you multipe that you get 66
The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
Answer:
An ionic bond forms between two ions of opposite charges. In ionic bonding, electrons transfer from one atom to another. The elements take on either a negative or positive charge. Ions are another name for charged atoms. Some elements are electropositive, and some are electronegative.
Hope this helps!