Answer:
<h2>3.31 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 23.2 g
volume = final volume of water - initial volume of water
volume = 62 - 55 = 7 mL
We have

We have the final answer as
<h3>3.31 g/mL</h3>
Hope this helps you
Supercritical mass results to an increase in the rate of fission. There is a chain reaction that will occur. Nuclear fission or explosion used in atomic bombs relies on supercritical mass. An atom splits into two, with each splitting into two pairs and so on, releasing energy in each step.
Answer:
3Mg(OH)2 + 2H3PO4 = Mg3(PO4)2 + 2H3O
Explanation:
<u>Answer:</u> The equation to calculate the mass of remaining isotope is ![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process
= initial amount of the sample = 20 grams
[A] = amount left after decay process = ? grams
Putting values in above equation, we get:
![0.5=\frac{2.303}{t}\log\frac{20}{[A]}](https://tex.z-dn.net/?f=0.5%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B20%7D%7B%5BA%5D%7D)
![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)
Hence, the equation to calculate the mass of remaining isotope is ![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)