The balanced equation for the above reaction is
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of NaOH moles required-0.5000 M / 1000 mL/L x 21.17 mL = 0.010585 mol
According to stoichiometry, acid moles required are 1/2 of the base moles reacted
Therefore number of H₂SO₄ moles reacted - 0.010585 /2 mol
Number of moles in 42.35 mL of H₂SO₄ - 0.010585 /2 mol
Therefore in 1 L solution - (0.010585) /2 / 42.35 mL x 1000 mL/L = 0.125 M
Molarity of H₂SO₄ - 0.125 M
The answer is that the mold melting point must be higher then molten glass, otherwise the mold would melt when molten glass is poured into it .
I hope this helps :)
The number 6.022 × 1023 indicating the number of atoms or molecules in a mole of any substance
Well, it was to capture Japanese controlled islands until the Japanese came into range of the American Bombers, which was different from them going after the Japanese and invading the islands.
If this molecule is one half of a buffer, then the formula of the second half of the buffer is M2CrO4 where M is a univalent metal.
<h3>What is a strong acid?</h3>
A weak acid is one that is able to ionize completely in solution. The acid called chromic acid H2CrO4 is not able to ionize completely in solution.
We know that a buffer is composed of a weak acid and its salt or a weak base and its salt hence if the acid H2CrO4 is present in a buffer then the other half must be salt of the acid.
If this molecule is one half of a buffer, then the formula of the second half of the buffer is M2CrO4 where M is a univalent metal.
Learn more about buffer:brainly.com/question/22821585
#SPJ1