Br
Se
As
Ge
Ga
Rb
Elements in the top right corner of the periodic table have the highest electronegativity. Elements on the right side have a higher electronegativity than those on the left, same with the ones on the top in comparison to those on the bottom.
Answer:
60.7 mole
Explanation:
for every 4 moles of iron 3 moles of oxygen is used.
So, moles of oxygen =
= 60.675
Answer:
The furnace releases 1757280 J
Explanation:
We will do the conversion on two steps:
1- convert the kcal to cal
2- convert the cal to J
Step 1: converting kcal to cal
1 kcal is equivalent to 1000 cal. Therefore:
420 kcal is equivalent to 420*1000 = 420000 cal
Step 2: converting cal to J
We are given that:
<span>1 cal = 4.184 J
</span>Therefore:
420000 cal is equivalent to 420000 * 4.184 = 1757280 J
Hope this helps :)
<u>Answer:</u> The freezing point of solution is -0.454°C
<u>Explanation:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2
= molal freezing point elevation constant = 1.86°C/m
= Given mass of solute (KCl) = 5.0 g
= Molar mass of solute (KCl) = 74.55 g/mol
= Mass of solvent (water) = 550.0 g
Putting values in above equation, we get:

Hence, the freezing point of solution is -0.454°C