<h3><u>Effects of the earths orbit around the sun:</u></h3>
The earth moves around the sun in an elliptical orbit, Johannes Kepler, a "German mathematician, and astronomer" described this elliptical orbit first. The orbit is close to being a circle but not a circle. Earth orbiting the sun mainly effects on seasons on earth.
Earth's four seasons are determined when Earth is tilted 23.4 degrees on the vertical axis, which is called as “axial tilt”. When a "southern hemisphere is tilted towards the sun", it experiences summer and northern hemisphere experiences winter, exactly opposite happens when northern hemisphere tilts towards Sun and this climate change goes on in all countries.
Answer:
a) F= 0,19 [N] according to problem statement
b) F = 0,19*10⁹ [N] using the right value of K
Explanation:
The force between two electric charges is according to Coulomb´s law is:
F = K * q₁*q₂ / d² where q₁ and q₂ are the charges on body one and body 2 respectively, d is the distance between the two bodies and K is a constant K = 8,988100*10⁹ N.m²/C². The problem establishes to use K = 8,988100 N.m²/C².
NOTE: To value of is : K = 8,988100*10⁹ N.m²/C². I am going to solve the problem using K = 8,988100 N.m²/C² if that information was an error, all we need to get the right answer is multiply the result by 10⁹
Then:
F = 8,988100 * 1,2* 0,36 / (4,5)² [ N*m²/C² ] * [ C*C*/m²]
F = 3,882859/ 20,25 [N]
F= 0,19 [N]
The force is of repulsion since the two charges are positive and in the direction of the straight line which passes through the centers of the bodies
Answer:
it goes up until we help it to but the moment we stop support it gets affected by gravity and goes back
Explanation:
Answer:
A larger force than 70 N will be required for the box to continue moving
Explanation:
A ramp is an inclined plane surface that is tilted to form a slope on its opposite sides
A ramp provides mechanical advantage or force amplification, by allowing less force to lift heavier load from having to move through a longer distance to reach a particular elevation when the slope of the ramp is gentle
Therefore, when the slope is steeper, and shorter, more force than 70 N will be required for the box to continue moving.