We need to consider for this exercise the concept Drag Force and Torque. The equation of Drag force is

Where,
F_D = Drag Force
= Drag coefficient
A = Area
= Density
V = Velocity
Our values are given by,
(That is proper of a cone-shape)



Part A ) Replacing our values,


Part B ) To find the torque we apply the equation as follow,



Answer:
<h2>9.92 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 3.2 × 3.1
We have the final answer as
<h3>9.92 N</h3>
Hope this helps you
The water in a reservoir behind a hydropower dam is another example of potential energy. The stored energy in the reservoir is converted into kinetic energy (motion) as the water flows down a large pipe called a penstock and spins a turbine.
Answer:
Average speed: 0.5 m/s. Average velocity: 0
Explanation:
Average speed is given by:

where
d is the total distance covered (the length, of one lap of the track, so d = 400 m)
t is the time taken to cover that distance (so, t = 800 s)
Substituting,

Instead, average velocity is defined as

where this time,
d is the displacement, which is the vector connecting the starting point to the final point of the motion
t is still the time taken (800 s)
However, in this case the walker starts and finishes his trip at the same point: therefore, the displacement is zero (d=0), and this means that the average velocity is zero as well.