Answer:
Explanation:
Velocity of a wave is describe as
velocity =Frequency × Wavelength
Mathematically
v = fλ
Hence, Frequency, F = v / λ
Wavelength λ = v/f
So, if the frequency is kept constant, wavelength of the wave becomes directly proportional to velocity of the wave.
And this implies that, as the speed double, the wavelength is double.
Answer:
D. Exothermic, because energy is being absorbed from the surroundings
Explanation:
This is true about the Exothemic reaction due to the fact that, the reaction occurs outside the body. During this reaction, the energy being absorbed <em>from the surrounding environment will hit the body surface thereby creating the coldness due to the heat given out from the body being minimal.</em>
Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position

Converting units of weights in units of mass (equation of motion)

From hook's law we can calculate the spring constant k

If we put m and k into the DE, we get

Denoting the constants
2λ =
= 
λ = b/0.215

λ^2 - w^2 = 
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
<span>In the article “Who Shaped our Behaviors? Peers or Parents?”, Judy Rich Harris suggests that C. peers are the most influential in forming children's personalities.
When a child is young, it is very impressionable and will follow other people's influence easily. Usually, that influence comes from other kids who can do something, and then your child will want to do the same thing. So peers are crucial when forming a personality at such a young age.</span>
Answer:
a. A baseball after it has been hit - not in free fall
b. A rock that is thrown in the air - not in free fall
c. The moon - free-fall
d. A paper airplane - not in free fall
e. A bird flying - not in free fall
Explanation:
- The free-fall is defined as the falling of an object due to the action of gravity. The object is not experiencing any other force neglecting the air resistance.
- If an object is in free-fall, the direction of its motion is directed towards the center of the earth. It does not have a horizontal component of velocity.
- If the body is under free-fall, but a centripetal force acts on it where it is equal to the gravitational force at that point. The object will have two components of velocity along the tangential line, perpendicular to the radius of the orbit.
a. A baseball after it has been hit - not in free fall according to point 1 & 2.
b. A rock that is thrown in the air - not in free fall according to point 1.
c. The moon - free-fall according to point 3.
d. A paper airplane - not in free fall according to point 1 & 2.
e. A bird flying - not in free fall according to point 1 & 2.