Here's the formula for the distance covered by an accelerating body in some amount of time ' T '. This formula is incredibly simple but incredibly useful. It pops up so often in Physics that you really should memorize it:
D = 1/2 a T²
Distance = (1/2)·(acceleration)·(time²)
This question gives us the acceleration and the distance, and we want to find the time.
(9,000 m) = (1/2) (20 m/s²) (time²)
(9,000 m) = (10 m/s²) (time²)
Divide each side by 10 m/s²:
(9,000 m) / (10 m/s²) = (time²)
900 s² = time²
Square root each side:
<em>T = 30 seconds</em>
Answer:
Voltage-gated K+ channels
Answer:
Professor Hawking had just turned 21 when he was diagnosed with a very rare slow-progressing form of ALS, a form of motor neurone disease (MND). He was at the end of his time at Oxford when he started to notice early signs of his disease. He was getting more clumsy and fell over several times without knowing why.
Explanation:
none
If you're looking for distance, you have to multiply the time and speed.
0.75 × 45 = 33.75
The rabbit hopped 33.75 m.
Answer:
176,000 N
Explanation:
Newton's second law:
∑F = ma
F = (4 × 40,000 kg) (1.1 m/s²)
F = 176,000 N