Answer:
A) Its density will decrease
Explanation:
When an object is heated, its volume increases. This is due to the fact that the particles in the medium vibrate more (if it is a solid) or they move more (if it is a liquid or a gas), therefore they tend to occupy a larger space.
At the same time, the mass of the object does not change, because the mass just represents the amount of matter contained in the object, so it does not increase/decrease at different temperatures.
The density of an object is defined as the ratio between the mass (m) and the volume (V):

We said that the mass remains unchanged while the volume increases: since the density is inversely proportional to the volume, this means that the density decreases.
Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
change in mass = 2.41*10^{8}kg
Explanation:
The change in the mass can be computed by using the relation
(1)
That is, the energy liberated comes from the mass of the nuclear fuel. The energy generated in one year is

Hence, by replacing in the equation (1) you have (c=3*10^{8}m/s)

HOPE THIS HELPS!!
ripples on the surface of water.
vibrations in a guitar string.
a Mexican wave in a sports stadium.
electromagnetic waves – eg light waves, microwaves, radio waves.
seismic S-waves.