Answer:
covalent
Explanation:
The carbon and the nitrogen very often form bonds in nature, carbon-nitrogen bonds, which are covalent types of bonds. In fact, the bonds between the carbon and nitrogen are one of the most abundant in the biochemistry and the organic chemistry. The bonds between these two can be double bonds, as well as triple bonds. The carbon-nitrogen bonds have the tendency to be strongly polarized toward the nitrogen.
Explanation:
The <u>First Law of Thermodynamics</u> states that energy cannot be created or destroyed in an isolated system. In other words, energy can be converted from one form into another, but it cannot be created nor destroyed.
<u>Conduction</u> is the transfer of energy from one molecule to another by direct contact. This transfer occurs when molecules hit against each other, which can take place in solids, liquids, and gases.
When you put your cold hands under your legs to warm your hands up, the heat energy from your legs is being transferred to your hands through conduction. However, since energy cannot be created, there is no extra heat energy that can instantaneously replace the heat created by your legs.
Answer : The pressure of the helium gas is, 1269.2 mmHg
Explanation :
To calculate the pressure of the gas we are using ideal gas equation:

where,
P = Pressure of
gas = ?
V = Volume of
gas = 210. mL = 0.210 L (1 L = 1000 mL)
n = number of moles
= 0.0130 mole
R = Gas constant = 
T = Temperature of
gas = 
Putting values in above equation, we get:


Conversion used : (1 atm = 760 mmHg)
Thus, the pressure of the helium gas is, 1269.2 mmHg
Answer:
The hydroxyl groups in alcohol molecules are responsible for hydrogen bonding between the alcohol molecules. As greater energy is required to overcome these strong intermolecular forces, the melting points and boiling points of alcohols are higher than those of alkanes with a corresponding chain length
The hydrogen and oxygen atoms that combine to form water molecules are bound together by covalent bonds. The electron from the hydrogen splits its time between the incomplete outer shell of the hydrogen atom and the incomplete outer shell of the oxygen atom.