Answer:
8CO + 17H2 = C8H18 + 8H2O
8, 17, 1, 8
Answer:
12 moles of F₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of F₂ needed to produce 8 moles of NF₃. This can be obtained as illustrated below:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, Xmol of F₂ will react to produce 8 moles of NF₃ i.e
Xmol of F₂ = (3 × 8)/2
Xmol of F₂ = 12 moles
Thus, 12 moles of F₂ is needed for the reaction.
Answer:
Double replacement
Precipitation reaction
Explanation:
You have the reaction:
REACTANTS PRODUCTS
BaCl₂ (aq) + Na₂SO₄ (aq) ⇒ 2NaCl (aq) + BaSO₄(s)
The general form of a double replacement reaction is the following:
AB + CD ⇒ CD + AB
The reactants basically, exchanged partners. In the case of your problem, Barium(Ba) and Sodium(Na) switched places. So this makes it a double-replacement reaction.
Now how do I know it is a precipitation reaction. A precipitation reaction occurs when two solutions combine and salt is formed. Salt is solid, so how do I know that's what occured? Look at your equation again:
BaCl₂ (aq) + Na₂SO₄ (aq) ⇒ 2NaCl (aq) + BaSO₄(s)
aq means aqueous (liquid)
s means solid
If you look at the product formed in the reaction, from two solutions, it formed a solid. So this is your clue as to why it is a precipitation reaction.