Answer: Option (d) is the correct answer.
Explanation:
Steps involved for the given reaction will be as follows.
Step 1:
(fast)
Rate expression for step 1 is as follows.
Rate = k ![[NO]^{2}](https://tex.z-dn.net/?f=%5BNO%5D%5E%7B2%7D)
Step 2: 
This step 2 is a slow step. Hence, it is a rate determining step.
Step 3.
(fast)
Here,
is intermediate in nature.
All the steps are bimolecular and it is a second order reaction. Also, there is no catalyst present in this reaction.
Thus, we can conclude that the statement step 1 is the rate determining step, concerning this mechanism is not directly supported by the information provided.
The number of molecules : 4.967 x 10²⁴
<h3>Further explanation
</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
8.25 moles of C₈H₁₈
The number of molecules :

First, we have to see how K2O behaves when it is dissolved in water:
K2O + H20 = 2 KOH
According to reaction K2O has base properties, so it forms a hydroxide in water.
For the reaction next relation follows:
c(KOH) : c(K2O) = 1 : 2
So,
c(KOH)= 2 x c(K2O)= 2 x 0.005 = 0.01 M = c(OH⁻)
Now we can calculate pH:
pOH= -log c(OH⁻) = -log 0.01 = 2
pH= 14-2 = 12
The atomic mass of Europium is 152 amu
Work:
151(0.4803) = 72.52 amu
153(0.5197) = 79.5 amu
72.5 + 79.5 = 152 amu
Answer:
I believe that there are 70.2
Explanation:
There are 2 atoms in sodium chloride so I x 35.1 by 2 and got 70.2