Answer:
Explanation:
distance between two crests = 8 m
The distance between the two crests is called wavelength.
So, wavelength, λ = 8 m
frequency = 2 Hz
Let v be the velocity of wave.
v = f x λ
v = 2 x 8
v = 16 m/s
idksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu j
Answer:
(a) The self inductance, L = 21.95 mH
(b) The energy stored, E = 4.84 J
(c) the time, t = 0.154 s
Explanation:
(a) Self inductance is calculated as;

where;
N is the number of turns = 1000 loops
μ is the permeability of free space = 4π x 10⁻⁷ H/m
l is the length of the inductor, = 45 cm = 0.45 m
A is the area of the inductor (given diameter = 10 cm = 0.1 m)

(b) The energy stored in the inductor when 21 A current ;

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

There’s frictional force acting on the sphere, which causes it to gradually slow down, and eventually come to a stop.
Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0