1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
2 years ago
7

Match the correct sentence together.

Physics
2 answers:
Brut [27]2 years ago
6 0
I’m pretty sure you times them so 1 with A, 2 with e, 3 with C, and 4 with B
Iteru [2.4K]2 years ago
3 0

Answer:

10 pounds 20 feet = 200 foot-pounds

37 pounds 10 feet =370 foot-pounds

29 newtons 10 meters =290 newton-meters

30 newtons 2 meters =60 newton-meters

Explanation:

trust me

You might be interested in
Select all that apply. which of the following astronomers supported the sun-centered system? tycho brahe johannes kepler coperni
Alex73 [517]
<h3 />

-Tycho Brahe and

-Ptolemy

<h3 />
  • The sun is a hot ball of glowing gases which is a star whose gravity holds the solar system together and also keeping all the planet and smallest particles of debris in its orbit.
3 0
3 years ago
Read 2 more answers
Organic macromolecules called _______ are insoluble in water
NikAS [45]

Answer:

lipids are insoluble in water which is why lipids are often found in biological membranes and other waterproof coverings.

3 0
3 years ago
4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar
defon
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

3 0
3 years ago
If a box is pushed 5.0 m across a floor using a force of 35 N, how much work was done?
aniked [119]

Answer:

175J

Explanation:

Work done is given by the product of the force applied and the distance travelled as a result of that force.

Or in formula , W=F×d

Thus,

W= 35 × 5.0=175 J or 1.8 e2 J

3 0
3 years ago
In what ways water helps in germination?​
quester [9]

Answer:

Water can spread germs through bacteria.

Explanation:

Bacteria can live in water and can spread to new locations when water is moved.

6 0
3 years ago
Other questions:
  • Sodium = Na
    8·2 answers
  • Screws and wedges are modified blank
    15·1 answer
  • Someone help please !!?
    7·1 answer
  • What is the frequency of a wave having a period equal to 18 seconds
    5·2 answers
  • Anyone know the answer to this question?
    5·1 answer
  • The ________ on the axis (c2) forms a pivot point with the atlas (c1) that allows you to nod a "no."
    13·1 answer
  • In what way are gravitational and electrical forces similar?
    15·1 answer
  • A man of mass 50kg ascends a flight of stairs 5m high in 5seconds. If acceleration due to gravity is 10ms-2 the power expended i
    10·2 answers
  • A neutral atom contains 8 protons 9 neutrons, and 8 electrons the atom must be A. A oxygen isotope. B. A nitrogen isotope. C. A
    14·2 answers
  • Find B when θ=35, E=10V, t=5, N=250, A=1.20m^2
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!