Maintaining an orbit has nothing to do with the satellite's speed.
ANY (tangential) speed is enough to stay in orbit, if the satellite
just stays away from Earth's atmosphere.
If the satellite completely stops moving 'sideways' at all, and just
hangs there, then the forces of gravity between the satellite and
the Earth will pull them together ... the satellite will fall into the
atmosphere and then to the ground.
Answer:
3m/s²
Explanation:
final velocity - initial velocity
______________________ = Acceleration
elapsed time
Answer:
M₁₂ = 1.01 10⁻⁴ H
, Fem = 3.54 10⁻³ V
Explanation:
The mutual inductance between two systems is
M₁₂ = N₂ Ф₁₂ / I₁
where N₂ is the number of turns of the inner solenoid N₂ = 21.0, i₁ the current that flows through the outer solenoid I₁ = 35.0 A / s and fi is the flux of the field of coil1 that passes through coil 2
the magnetic field of the coil1 is
B = μ₀ n I₁ = μ₀ N₁/l I₁
the flow is
Φ = B A₂
the area of the second coil is
A₂ = π d₂ / 4
Φ = μ₀ N₁ I₁ / L π d² / 4
we substitute in the first expression
M₁₂ = N₂ μ₀ N₁ / L π d² / 4
M₁₂ = μ₀ N₁ N₂ π d² / 4L
d = 0.170 cm = 0.00170 m
L = 4.00 cm = 0.00400 m
let's calculate
M₁₂ = 4π 10⁻⁷ 6750 21 π 0.0017²/ (4 0.004)
M₁₂ = π² 0.40966 10⁻⁷ / 0.004
M₁₂ = 1.01 10⁻⁴ H
The electromotive force is
Fem = - M dI₁ / dt
Fem = - 1.01 10⁻⁴ 35.0
Fem = 3.54 10⁻³ V
Answer:
No
Explanation:
Because Jupiter, the largest planet in the SS, is right in the middle, and moons like Titan are in the very middle, so it's basically small, then huge, and normal again.
"C) The movement of the gas particles keeps the balloon inflated" best describes the gas trapped in a sealed balloon, although the movement varies with the heat of the gas.