The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic
How do you want me to give you points tell me and I’ll do it
The correct answer is:
D. Extrusive rocks.
The explanation:
when extrusive igneous rocks form when magma reaches the Earth's surface a volcano and cools quickly. Most extrusive (volcanic) rocks have small crystals. Examples include basalt, rhyolite, andesite, and obsidian.
Answer:
Explanation:
The same current flows through each part of a series circuit. The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops.
I = 0.33 A
= 330 mA
Capacity, P = I × t
= 2050/330
= 6.21 hours
Time, t = 6.21 hours.