Answer:
Work done = (1/2)[(Gmm_e)/(R_e)]
Explanation:
I've attached the explanations below.
Answer:
comparing the anatomy of organisms
Explanation:
Basically, Rocks are the solid evidence used to date the earth.
Due to the changing in the genetic make up of organisms,the anatomy of organisms is not a reliable evidence to date the earth.
According to KE = (3/2)kT
reducing temperature, in KELVIN, by half, average KE is reduced by half.
Assuming the raindrop was stationary relative to the vertical distance to the ground at the start:
D=0.5at where d is distance, a is acceleration and t is time
D is 300 meters
a is 9.8 meter/sec squared
Solve for t in seconds
t = 61.2 seconds
v=at where v is velocity
a is 9.8 meters per second squared
t is 61.2 seconds
solve for v
v = 600 meters per second.
If it had an initial vertical velocity (v0) at the start :
d= 0.5at+v0t
and
v=at+v0
Answer:
Explanation:
The mass of that science book...wow. In pounds that would be 35.2! Yikes!
Anyway, we need final velocity here, and the mass of the book has nothing to do with how fast it falls. Everything is pulled by the same gravity. A feather falls at 9.8 m/s/s and so does an elephant. Mass is useless information. The equation we will use is
Δx where
v is the final velocity, our unknown,
v₀ is the initial velocity which is 0 since someone had to be holding the book before dropping it,
a is the pull of gravity which is always -9.8 m/s/s, and
Δx = -120 which is the displacement (it's negative because the book falls below the point from which it was dropped). Filling in:
so
and
v = 48 m/s
As far as how far above the bottom of the cliff the object is when it is moving at 12 m/s we will use the same equation, but the velocity will be 12:
Δx and
144 = -19.6Δx so
Δx = -7.3 m. That's how far from the top of the cliff it is. We subtract then t find out how far it is from the bottom:
120 - 7.3 = 112.7 m off the ground.