The sun’s energy is most useful to humans after it is converted to chemical energy. Living organisms like humans and animals could not directly utilize the energy from the sun because of lack in organs that would allow photosynthesis. Humans and animals obtain the energy from the sun from the intake of food. These foods contain chemical energy which is obtained from the solar energy of the sun. Plants use solar energy for photosynthesis which converts the energy into chemical energy. Then, animals and humans eat the plants obtaining the chemical energy which can readily processed by the body as compared to solar energy.
Answer:
(C) 15 Feet
Explanation:
You must park at lest 15 Feet away from a fire hydrant.
If you disobey this law, you could be fined up to $115 dollars.
143m/s if you just perhaps by what you know you'll figure it out
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer:
Approximately
.
Explanation:
The refractive index of the air
is approximately
.
Let
denote the refractive index of the glass block, and let
denote the angle of refraction in the glass. Let
denote the angle at which the light enters the glass block from the air.
By Snell's Law:
.
Rearrange the Snell's Law equation to obtain:
.
Hence:
.
In other words, the angle of refraction in the glass would be approximately
.