Explanation:
The volume of the bread decreases, making the bread appear more compact, and smaller in size. The mass stays the same, it won't change unless part of the bread is removed. The density increases, the air bubbles inside of the bread get squished down, causing the bread to be smaller, and in turn, causing it to be more solid.
I hope this helped!
Thanks!
Your friend in answering,
~Steve
Answer:
The heavier piece acquired 2800 J kinetic energy
Explanation:
From the principle of conservation of linear momentum:
0 = M₁v₁ - M₂v₂
M₁v₁ = M₂v₂
let the second piece be the heavier mass, then
M₁v₁ = (2M₁)v₂
v₁ = 2v₂ and v₂ = ¹/₂ v₁
From the principle of conservation of kinetic energy:
¹/₂ K.E₁ + ¹/₂ K.E₂ = 8400 J
¹/₂ M₁(v₁)² + ¹/₂ (2M₁)(¹/₂v₁)² = 8400
¹/₂ M₁(v₁)² + ¹/₄M₁(v₁)² = 8400
K.E₁ + ¹/₂K.E₁ = 8400
Now, we determine K.E₁ and note that K.E₂ = ¹/₂K.E₁
1.5 K.E₁ = 8400
K.E₁ = 8400/1.5
K.E₁ = 5600 J
K.E₂ = ¹/₂K.E₁ = 0.5*5600 J = 2800 J
Therefore, the heavier piece acquired 2800 J kinetic energy
Answer:
Electrical energy
Explanation:
<em>Hope </em><em>It </em><em>helps </em><em>you </em>
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
Answer:
The train's displacement is zero.
Explanation:
Given data,
The time taken by the train from NY to Washington and back is, t = 6 h 5 min
The distance between the two stations is, d = 363 km
Therefore, the total distance the train traveled is, d' = 726 km
The displacement is defined as the change in position coordinates with respect to its original position.
If the train travels from one point and returns back to the same point after some time, there is no change in the position coordinates with respect to its original position.
Hence, the train's displacement is zero.