Answer:
The moment of inertial of the wheel, 
Explanation:
Given;
8 spokes of uniform diameter
mass of each spoke, =
length of each spoke, = L
mass of outer ring, = 
The moment of inertial of the wheel will be calculated as;

where;
is the moment of inertia of each spoke
is the moment of inertia of the rim
Moment of inertia of each spoke 
Moment of inertial of the wheel

The measure of the quantity of matter would be mass. Mass is measured in kilograms. I hope this helped!:)
When the pump removed the air in the bell, the balloon expanded.
<u>Option: B</u>
<u>Explanation:</u>
In order to construct our own environment in the glass jar known as bell jar system, which can be used to explore and consider our larger environment on Earths, for an instance. Here a glass jar that hinges on an airtight rubber basis i.e seals appropriately. At the top of the jar, a bung is connected to it which passed via a metal tube. It has an adjacent flexible tube that goes to a hand vacuum pump and the best hand-powered pump was made with a wine preserver.
When the pump extracts the air from the bell jar, the pressure inside the balloon naturally decreases. The balloon usually has a air pressure around it, which restricts its size, but when this air is extracted and the pressure around it decreases the gas in the balloon will expand and the balloon seems to be inflating. When you release the air back into the bell jar, it will once again compress back to its actual size.
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be
