Answer:
umm this is not a question
Explanation:
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
D. infinitely extended in all directions
Explanation:
A semi infinite solid is infinitely extended in every direction. It has a single surface and can extend when heat is applied.
The body of a semi infinite solid is idealised, that is, when there is heat present, it expands in all directions to infinity. It can be used for a thick wall because its shape can be changed when subjected to different levels of heat near its surface.
It is also expands as heat is applied because its thickness is negligible.
This idealized body is used for earth, thick wall, steel piece of any shaped quenched rapidly etc indetermining variation of temperature near its surface & other surface being too far to have any impact on the region in short period of time since heat doesn’t have sufficient time to penetrate deep into body thus thickness can be neglected
Yes, the above-given statement is true
<u>Explanation:</u>
- The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
- Momentum is described as the mass of the object multiplied by its velocity.
- <u>Momentum (p) = Mass (M) * Velocity (v)</u>
- Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.