Answer:
Y component = 32.37
Explanation:
Given:
Angle of projection of the rocket is, 
Initial velocity of the rocket is, 
A vector at an angle
with the horizontal can be resolved into mutually perpendicular components; one along the horizontal direction and the other along the vertical direction.
If a vector 'A' makes angle
with the horizontal, then the horizontal and vertical components are given as:

Here, as the velocity is a vector quantity and makes an angle of 33.6 with the horizontal, its Y component is given as:

Plug in the given values and solve for
. This gives,

Therefore, the Y component of initial velocity is 32.37.
The atoms which make up the ion are covalently bonded to one another. 19) It is possible for a compound to possess both ionic and covalent bonding. a. If one of the ions is polyatomic then there will be covalent bonding within it.
Explanation:
When you run, your body has a kinetic energy and when you fall while running, the friction between the carpet and your foot, transforms the kinetic energy into thermal energy or heat energy. This can even cause, real burn if the skin were too hot.
Answer:
1.58 Hz
Explanation:
The frequency of the simple pendulum is given by
f = 1/T
= 1/2π√g/l
In this problem, I = 10.0 cm = 0.1 m
f = 1/2π√9.8/0.1
= 1.58 Hz
Answer:
t= 27.38 mins [this the time taken by the enzyme to hydrolyse 80% of the fat present]
Explanation:given values
Half life of lipase t_1/2 = 8 min x 60s/min = 480 s
Rate constant for first order reaction
k_d = 0.6932/480 = 1.44 x 10^-3 s-1
Initial fat concentration S_0 = 45 mol/m3 = 45 mmol/L
rate of hydrolysis Vm0 = 0.07 mmol/L/s
Conversion X = 0.80
Final concentration S = S_0(1-X) = 45 (1-0.80) = 9 mol/m3
K_m = 5mmol/L
time take is given by
![t= -\frac{1}{K_d}ln[1-\frac{K_d}{V_m_0}(k_mln\frac{s_0}{s}+(s_0-s))]](https://tex.z-dn.net/?f=t%3D%20-%5Cfrac%7B1%7D%7BK_d%7Dln%5B1-%5Cfrac%7BK_d%7D%7BV_m_0%7D%28k_mln%5Cfrac%7Bs_0%7D%7Bs%7D%2B%28s_0-s%29%29%5D)
all values are given and putting these value we get
t=1642.83 secs
which is equal to
t= 27.38 mins [this the time taken by the enzyme to hydrolyse 80% of the fat present]