Following reaction is involved in above system
HOCl(aq) ↔ H+(aq) + OCl-<span>(aq)
</span>OCl-(aq) + H2O(l) ↔ HOCl(aq) + OH-<span>(aq)
</span>
Now, if the system is obeys 1st order kinetics we have
K = [OCl-][H+<span>]/[HOCl] ............. (1)
</span>∴ [HOCl-] / [OCl-] = [H+] (1 / 3.0 * 10-8<span>) ............. (2)
</span>
and now considering that system is obeying 2nd order kinetics, we have
K = [OH-][HOCl-] / [OCl-] ................. (3<span>)
</span>Subs 2 in 3 we get
K = [OH-][H+] (1 / 3.0 * 10-8<span>)
</span>we know that, [OH-][H+] = 10<span>-14
</span>∴K = 3.3 * 10<span>-7
</span>
Thus, correct answer is e i.e none of these
Answer:
Explanation: Bromine, the dark red color disappears quickly as the atoms of bromine bond with the atoms of carbon in the double bond.
<h3>Answer:</h3>
Phosphoric acid reacts with magnesium hydroxide to produce magnesium phosphate and water via the following reaction:
2H3PO4 + 3Mg(OH)2 → Mg3(PO4)2 + 6H2O
(solid) (solid) (solid) (liquid)
<h3>Explaination:</h3>
This is a typical neutralization reaction of an acid with a base to form a salt and water. The reaction is exothermic, gives off heat,
ΔH < 0 , and may be balanced by adding balancing numbers in front, ie adding molecules, in order to ensure that the total number of atoms of each element is the same on the left and right hand sides of the equation.
Doing so we obtain :
2H3PO4 + 3Mg(OH)2 → Mg3(PO4)2 + 6H2O
(solid) (solid) (solid) (liquid)
<h3>hope it helps :)</h3>
"(2) increase in suburbanization" was a direct result of the <span>baby boom that followed World War II, but of course there were other factors that resulted as well. </span>
The formula for pH given the pKa and the concentrations
are:
pH = pKa + log [a–]/[ha]
<span>
Therefore calculating:</span>
3.75 = 3.75 + log [a–]/[ha]
log [a–]/[ha] = 0
[a–]/[ha] = 10^0
<span>[a–]/[ha] = 1</span>