Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic
Answer:
They are big rocks that fly through space and are made of most commonly chondrite. When they collide, they collide with such force that they create craters on places like the moon.
The correct answer is c, it’s evaporating there for it’s a chemical change
The correct answer is (1) one mole of NO2.
The gram formula mass is also known as the molar mass and is defined by the mass over one mole of a substance.
Hope this helps~
Answer:
For H-Cl, the direction is towards the chlorine atom
For F-CH3, the direction is towards the flourine atom.
Explanation:
The dipole moment is a vector quantity. This implies that it has both magnitude and direction.
Thus, the direction of the dipole moment always points from the positive atom towards the negative atom.
This explains the fact that it points to chlorine in HCl and points to flourine in F-CH3