Answer:
The concentration of KOH is 0.186 M
Explanation:
First things first, we need too write out the balanced equation between HBr and KOH.
This is given as;
KOH (aq) + HBr (aq) → KBr (aq) + H2O (l)
From the reaction above, we can tell that it takes 1 mole of KOH to react with 1 mole of HBr.
We use the acid base formular in calculating unknown concentrations. This is given as;

where;
Ca = Concentration of acid
Va = Volume of acid
Cb = Concentration of base
Vb = Volume of base
na = Number of moles of acid
nb = Number of moles of base
KOH is the base and HBr is acid.
Hence;
Ca = 0.225
Va = 35
Cb = ?
Vb = 42.3
na = 1
nb = 1
Making Cb subject of formular we have;

Cb = (0.225 * 35 * 1) / (42.3 * 1)
Cb = 0.186 M
Answer:

Explanation:
We can use the Ideal Gas Law and solve for T.
pV = nRT
Data
p = 1.25 atm
V = 25.0 L
n = 2.10 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
Calculations
1. Temperature in kelvins

2. Temperature in degrees Celsius

Answer:
Scientific theories are testable and make falsifiable predictions. They describe the causes of a particular natural phenomenon and are used to explain and predict aspects of the physical universe or specific areas of inquiry (for example, electricity, chemistry, and astronomy).
A good theory in the theoretical sense is (1) consistent with empirical observations; is (2) precise, (3) parsimonious, (4) explanatorily broad, and (5) falsifiable; and (6) promotes scientific progress (among others; Table 1.1).
<span>Same answer, different setup. We know that the sum of the oxidation numbers is zero for a compound and the ionic charge for a polyatomic ion, and we know that sulfite ion is -2.
Create an algebraic equation by multiplying the subscripts times the oxidation number of a single element.
+x -6 = -2
+x -2
S O3
Solve for x
x = +4</span>