<u>Answer: </u>The correct rate of the reaction is ![Rate=k[a][b]^5[c]^6](https://tex.z-dn.net/?f=Rate%3Dk%5Ba%5D%5Bb%5D%5E5%5Bc%5D%5E6)
<u>Explanation:</u>
Rate law of the reaction is the expression which expresses the rate of the reaction in the terms of the molar concentrations of the reactants with each term raised to the power of their respective stoichiometric coefficients in a balanced chemical equation.
For the given reaction:

The expression for the rate law will be: ![Rate=k[a][b]^5[c]^6](https://tex.z-dn.net/?f=Rate%3Dk%5Ba%5D%5Bb%5D%5E5%5Bc%5D%5E6)
Answer is: mass of water is 56.28 grams.
Chemical reaction: 2H₂O → 2H₂ + O₂.
m(O₂) = 50.00 g.
n(O₂) = m(O₂) ÷ M(O₂).
n(O₂) = 50 g ÷ 32 g/mol.
n(O₂) = 1.5625 mol.
From chemical reaction: n(O₂) : n(H₂O) = 1 : 2.
n(H₂O) = 2 · 1.5625 mol.
n(H₂O) = 3.125 mol.
m(H₂O) = n(H₂O) · M(H₂O).
m(H₂O) = 3.125 mol · 18.01 g/mol.
m(H₂O) = 56.28 g.
If i’m correct it’s b, bouyance force.
First the theoretical yield of Nabr
by use of mole ratio between FeBr3 and NaBr which is 2:6 the theoretical yield
=2.36 x6/2= 7.08 moles
the % yield = actual yield/ theoretical yield x 100
that is 6.14/7.08 x100= 86.72%