Answer:
Original temperature (T1) = - 37.16°C
Explanation:
Given:
Gas pressure (P1) = 2.75 bar
Temperature (T2) = - 20°C
Gas pressure (P2) = 1.48 bar
Find:
Original temperature (T1)
Computation:
Using Gay-Lussac's Law
⇒ P1 / T1 = P2 / T2
⇒ 2.75 / T1 = 1.48 / (-20)
⇒ T1 = (2.75)(-20) / 1.48
⇒ T1 = -55 / 1.48
⇒ T1 = - 37.16°C
Original temperature (T1) = - 37.16°C
Answer:
Region B, because the pressure inside the cylinder is equal to the vapor pressure of water at 80∘C when both liquid and gas phases are present.
Explanation:
As expansion occurs, liquid water evaporates reversibly, holding the pressure constant at the equilibrium vapor pressure of water at 80∘C(0.47atm) 80∘C (0.47 atm). When all of the liquid has evaporated, the pressure drops and follows the ideal gas law.
the answer is :the concentration the chemicals in the solution because the more ions there are in the solution the higher the conductivity also the more ions there are in the solution the stronger the electrolyte
Answer:
It is C
Explanation:
It is Cutting paper because cutting paper doesn't alter the chemical composition of paper