A proton is the same as an H+ ion, and Arrhenius acids are the ones that release H+ in solution, so the answer is A
Answer:
54.7°C is the new temperature
Explanation:
We combine the Ideal Gases Law equation to solve this.
P . V = n. R. T
As moles the balloon does not change and R is a constant, we can think this relation between the two situations:
P₁ . V₁ / T₁ = P₂ . V₂ / T₂
T° is absolute temperature (T°C + 273)
68.7°C + 273 = 341.7K
(0.987 atm . 564L) / 341.7K = (0.852 atm . 625L) / T₂
1.63 atm.L/K = 532.5 atm.L / T₂
T₂ = 532.5 atm.L / 1.63 K/atm.L → 326.7K
T° in C = T°K - 273 → 326.7K + 273 = 54.7°C
The balanced equation for the neutralisation reaction is as follows
2H₃PO₄ + 3Mg(OH)₂ --> Mg₃(PO₄)₂ + 6H₂O
stoichiometry of H₃PO₄ to H₂O is 2:6
number of H₃PO₄ moles reacted - 0.24 mol
if 2 mol of H₃PO₄ form 6 mol of H₂O
then 0.24 mol of H₃PO₄ forms - 6/2 x 0.24 = 0.72 mol of H₂O
therefore 0.72 mol of H₂O are formed
It's a physical change because the composition of the salt hasn't change. Only the change in substance/form has occured. To tell if something has undergone physical change is:
• Melting
• Boiling
• Freezing
• Condensing
• Breaking
• Bending
• Dissolving
• Molecules can change motion and proximity
To tell if something changed chemically:
• Molecules rearrange with other molecules to make new substance
• Can be production of flames
• Color change
• Bubbling/fizzing
• Temp. change
• change in composition
The <span>molar concentration of the crystal violet solution is more concentrated than that of the sodium hydroxide solution. It is because the crystal violet solution has more solute in it compared to the sodium hydroxide.</span>