Answer:
A)A compound that donates protons
Explanation:
for B it is the defination of bases
find the answer in the attached image. please mark as brainliest if it is helpful.
B is the answer because it is
Answer:

Explanation:
Hello,
In this case, given the 0.0990 moles of the salt are soluble in 1.00 L of water only, we can infer that the molar solubility is 0.099 M. Next, since the dissociation of the salt is:

The concentrations of the A and B ions in the solution are:
![[A]=0.099 \frac{molAB_3}{L}*\frac{1molA}{1molAB_3} =0.0099M](https://tex.z-dn.net/?f=%5BA%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B1molA%7D%7B1molAB_3%7D%20%20%3D0.0099M)
![[B]=0.099 \frac{molAB_3}{L}*\frac{3molB}{1molAB_3} =0.000.297M](https://tex.z-dn.net/?f=%5BB%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B3molB%7D%7B1molAB_3%7D%20%20%3D0.000.297M)
Then, as the solubility product is defined as:
![Ksp=[A][B]^3](https://tex.z-dn.net/?f=Ksp%3D%5BA%5D%5BB%5D%5E3)
Due to the given dissociation, it turns out:
![Ksp=[0.099M][0.297M]^3\\\\Ksp=2.59x10^{-3}](https://tex.z-dn.net/?f=Ksp%3D%5B0.099M%5D%5B0.297M%5D%5E3%5C%5C%5C%5CKsp%3D2.59x10%5E%7B-3%7D)
Regards.