Answer:

Explanation:
<u>Given:</u>
- Diameter of the plates of the capacitor, D = 21 cm = 0.21 m.
- Distance of separation between the plates, d = 1.0 cm = 0.01 m.
- Minimum value of electric field that produces spark,

When the dimensions of the plate of the capacitor is comparatively much larger than the distance of separation between the plates, then, according to the Gauss' law of electrostatics, the value of the electric field strength in the region between the plates of the capacitor is given by

where,
= surface charge density of the plate of the capacitor =
.
= magnitude of the charge on each of the plate.
= surface area of each of the plate =
= electrical permittivity of free space, having value = 
For the minimum value of electric field that produces spark,

It is the maximum value of the magnitude of charge which can be added up to each of the plates of the capacitor.
The answer is letter B. XD
Answer:
t=67.7s
Explanation:
From this question we know that:
Vo = 6m/s
a = 1.8 m/s2
D = 1500m
And we also know that:
Replacing the known values:
Solving for t we get 2 possible answers:
t1 = -44.3s and t2 = 67.7s Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:
t = 67.7s
Answer: 110000
Explanation:
26/9=30.5555555556
30.5555555556 x 60=1833.33333333
110000 x 60=110000
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s