Answer:
t = 2 s
Explanation:
In order to find the time taken by the stone to fall from the top of the building to the ground we can use 2nd equation of motion. 2nd equation of motion is as follows:
s = Vit + (0.5)gt²
where,
t = time = ?
Vi = Initial Velocity = 20 m/s
s = height of building = 60 m
g = 9.8 m/s²
Therefore,
60 m = (20 m/s)t + (0.5)(9.8 m/s²)t²
4.9t² + 20t - 60 = 0
solving this quadratic equation we get:
t = -6.1 s (OR) t = 2 s
Since, the time cannot be negative in magnitude.
Therefore,
<u>t = 2 s</u>
B is the answer. because it is a physical change
Answer:
It ran at an average of 2 meters per second.
Explanation:
1.Light-collecting area
2.Angular resolution
Answer:
1. The image of the person is 1.41 m, virtual and formed at the back of the surface of the globe.
2. The person's image is 3.38 m tall.
Explanation:
From the given question, object distance, u = 0.75 m, object height = 1.8 m, radius of curvature of the reflecting globe, r = 8 cm = 0.08 m.
f =
=
= 0.04 m
1. The image distance, v, can be determined by applying mirror formula:
=
+ 
=
+ 
-
= 
= 
= - 
⇒ v = -
= - 1.41 m
The image of the person is 1.41 m, virtual and formed at the back of the surface of the globe.
2.
= 
= 
v = 
= 3.384
v = 3.38 m
The person's image is 3.38 m tall.