CBr4 is a symmetric tetrahedral molecule so it will be non-polar.
For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
I'm pretty sure that it's fracture, Not sure though
Answer:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
E decreseas 3/2 as fast as G increases = 0.30 M/s
Explanation:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
When the concentration of D is decreasing by 0.10 M/s, how fast is the concentration of H increasing:
Given data = d[D]/dt = 0.10 M/s
-d[D] / 2dt = d[H]/dt
d[H]/dt = 0.05 M/s
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
When the concentration of G is increasing by 0.20 M/s, how fast is the concentration of E decreasing:
d[G] / 2dt = -d[H]/3dt
E decreseas 3/2 as fast as G increases = 0.30 M/s
To fully understand the problem, we use the ICE table to identify the concentration of the species. We calculate as follows:
Ka = 2.0 x 10^-9 = [H+][OBr-] / [HOBr]
HOBr = 0.50 M
KOBr = 0.30 M = OBr-
<span> HOBr + H2O <-> H+ + OBr- </span>
<span>I 0.50 - 0 0.30 </span>
<span>C -x x x
</span>---------------------------------------------
<span>E(0.50-x) x (0.30+x) </span>
<span>Assuming that the value of x is small as compared to 0.30 and 0.50 </span>
<span>Ka = 2.0 x 10^-9 = x (0.30) / 0.50) </span>
<span>x = 3.33 x 10^-9 = H+</span>
pH = 8.48