Answer:
U= 238g/mol
U2O5= 556g/mol
Explanation:
Since U= 238
O=16
U3O5= 2(238)+3(16)=556g/mol
Answer:
Explanation:
The definition of acids and bases by Arrhenius Theory was modified and extended by Bronsted-Lowry.
Bronsted-Lowry defined acid as a molecule or ion which donates a proton while a base is a molecule or ions that accepts the proton. This definition can be extended to include acid -base titrations in non-aqueous solutions.
In this theory, the reaction of an acid with a base constitutes a transfer of a proton from the acid to the base.
From the given information:

From above:
We will see that HCN releases an H⁺ ion, thus it is a Bronsted-Lowry acid
accepts the H⁺ ion ,thus it is a Bronsted-Lowry base.
The formula of the reactant that acts as a proton donor is <u>HCN</u>
The formula of the reactant that acts as a proton acceptor is <u>H2O</u>
The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M
The answer is A. The vibration caused by the waves through the air eventually weaken, which is why sound diminishes easily over distance.
<span><span>Dipole-dipole interactions , example: ammoni </span><span>forces, example: methane, CH4</span><span>Hydrogen bonding example: water, H2O </span></span>